全球氫能已進(jìn)入產(chǎn)業(yè)化快速發(fā)展新階段,歐美日韓等20多個(gè)主要經(jīng)濟(jì)體已將發(fā)展氫能提升到國(guó)家戰(zhàn)略層面,相繼制定發(fā)展規(guī)劃、路線圖以及相關(guān)扶持政策,加快產(chǎn)業(yè)化發(fā)展進(jìn)程,氫能產(chǎn)業(yè)熱度持續(xù)上升。本文將從政策、市場(chǎng)、技術(shù)3大層面出發(fā),全面梳理氫能產(chǎn)業(yè)發(fā)展現(xiàn)狀并對(duì)2023年發(fā)展趨勢(shì)作出展望。
氫能產(chǎn)業(yè)發(fā)展現(xiàn)狀及2023年發(fā)展趨勢(shì)展望(一)從政策和市場(chǎng)層面進(jìn)行了分析,本文從技術(shù)層面進(jìn)行分析。
電解槽技術(shù)路線分析:堿性電解槽是目前主流,PEM電解槽降本是關(guān)鍵
國(guó)家發(fā)改委發(fā)布的《氫能中長(zhǎng)期發(fā)展規(guī)劃》提出至2025年可再生能源制氫量達(dá)到10~20萬噸/年的目標(biāo),將“綠氫”作為新增氫能消費(fèi)的重要組成部分,實(shí)現(xiàn)二氧化碳減排100~200萬噸/年。
因?yàn)橹笆袌?chǎng)普遍認(rèn)為綠氫成本實(shí)現(xiàn)平價(jià)是在2030年前后,進(jìn)入“碳中和”階段“綠氫”才會(huì)大規(guī)模上量。但隨著2025年政策目標(biāo)的明確,預(yù)計(jì)可再生能源制氫的推進(jìn)也將提速。
目前全球成熟的電解水制氫技術(shù),主要是堿性電解和PEM電解兩種方式。兩者的成本構(gòu)成也有明顯的區(qū)別,PEM電解水制氫的絕對(duì)成本高,主要是雙極板、膜材料以及鉑、銥等貴金屬催化劑材料,成本明顯高于堿性電解槽。
比較目前主流的電解水制氫技術(shù)以及有發(fā)展?jié)摿Φ募夹g(shù),我們按照技術(shù)路線演進(jìn)的時(shí)間線進(jìn)行展望:
堿性電解水技術(shù)憑借成本低、技術(shù)成熟度高的優(yōu)勢(shì),目前在國(guó)內(nèi)是主流路線,預(yù)計(jì)將會(huì)長(zhǎng)期占據(jù)電解水制氫技術(shù)的主導(dǎo)地位。
PEM電解水技術(shù)目前已經(jīng)初步形成產(chǎn)業(yè)化并在部分地區(qū)建設(shè)示范應(yīng)用,隨著技術(shù)的進(jìn)步和成本的下降,預(yù)計(jì)最快將在2025~2030年形成規(guī)?;瘧?yīng)用。
固體氧化物水電解技術(shù)(SOEC)目前理論上能量轉(zhuǎn)換效率最高,采用固體氧化物作為電解質(zhì)材料,可在400~1000℃高溫下工作,可以利用熱量進(jìn)行電氫轉(zhuǎn)換,具有能量轉(zhuǎn)化效率高且不需要使用貴金屬催化劑等優(yōu)點(diǎn),也有望成為未來技術(shù)的發(fā)展方向,預(yù)計(jì)在2030年之后可逐步應(yīng)用于規(guī)模化的可再生能源制氫。
“綠氫”技術(shù)路線分析:生產(chǎn)降本路徑明確,2030年有望全行業(yè)實(shí)現(xiàn)平價(jià)
現(xiàn)行技術(shù)條件下電解水制氫成本較高,其中主要包括電費(fèi)成本,設(shè)備折舊成本、人工費(fèi)用等。
隨著技術(shù)的進(jìn)步以及自動(dòng)化生產(chǎn),設(shè)備成本會(huì)逐漸下降;提升設(shè)備使用時(shí)長(zhǎng)從而提升氫氣產(chǎn)量的方式也可以攤薄設(shè)備的折舊成本和其他固定費(fèi)用。
此外,占比電解水成本較高的電價(jià)也會(huì)隨著光伏、風(fēng)電等可再生能源的發(fā)展持續(xù)下降。
2021年在“雙碳”目標(biāo)提出之后,國(guó)內(nèi)電解水制氫項(xiàng)目規(guī)劃和推進(jìn)逐步加快。目前國(guó)內(nèi)的電解水制氫路線以堿性電解槽為主,主要是堿性電解槽技術(shù)路線成熟,成本具有顯著優(yōu)勢(shì)。PEM電解槽由于成本高,商業(yè)推廣依然需要時(shí)間,而且從目前的國(guó)內(nèi)商業(yè)模式下,PEM槽的技術(shù)優(yōu)勢(shì)并不明顯。
從國(guó)內(nèi)項(xiàng)目規(guī)劃而言,綠氫的下游應(yīng)用主要包括化工、燃料電池車、熱電聯(lián)供等儲(chǔ)能領(lǐng)域。
從經(jīng)濟(jì)性和現(xiàn)有市場(chǎng)規(guī)???,化工原料是綠氫最主要的利用途徑,這是因?yàn)椋?/p>
首先,綠氫制取在大部分還是在化工園區(qū)進(jìn)行。安全監(jiān)管層面,氫氣歷史上長(zhǎng)期作為危險(xiǎn)化工品被管理,因此在大部分省份氫氣的生產(chǎn)只能在化工園區(qū)進(jìn)行,將制取的氫氣直接提供給園區(qū)化工企業(yè)使用,減少了運(yùn)輸成本,經(jīng)濟(jì)性可以最大化。
其次,化工用氫需求大,商業(yè)模式穩(wěn)定。傳統(tǒng)上部分化工生產(chǎn)路線生產(chǎn)需要加氫,之前都是化石能源制取的氫氣作為氫源,替換成綠氫既可以幫助化工生產(chǎn)過程減碳,又不需要額外的轉(zhuǎn)換工藝,因此有穩(wěn)定的市場(chǎng)需求。
而綠氫其它領(lǐng)域的應(yīng)用,目前的經(jīng)濟(jì)性和商業(yè)模式還在探索過程中。由于新能源發(fā)電的波動(dòng)性以及電解槽響應(yīng)時(shí)間的缺陷,且電網(wǎng)目前很難為化工園區(qū)的制氫項(xiàng)目接入專線,所以目前國(guó)內(nèi)堿性電解槽較為理想的應(yīng)用模式還是直接利用網(wǎng)電作為電解槽用電來源,同時(shí)利用配套新能源電站的電量對(duì)沖網(wǎng)電成本,類似模擬結(jié)算的方式確認(rèn)用電成本。這樣一方面可以保證電解槽運(yùn)行的持續(xù)性,另一方面通過自身低成本的新能源發(fā)電來降低電解綜合用電成本,有助于降低綠氫的制取成本。
在這種模式下,我們測(cè)算目前堿性槽平均的電解電價(jià)約0.35元/kwh,對(duì)應(yīng)制氫成本在24.07元/kg。如果制氫項(xiàng)目配套的新能源電站發(fā)電小時(shí)數(shù)較高,比如風(fēng)光互補(bǔ)的新能源電站,向電網(wǎng)貢獻(xiàn)的電量更多,電解綜合用電成本也會(huì)更低,預(yù)計(jì)較低的電價(jià)成本可以達(dá)到0.25元/kwh,對(duì)應(yīng)的成本大約可降到20元/kg以內(nèi),大約對(duì)應(yīng)17.07元/kg,基本與化石能源制氫中的高成本路線持平,但目前僅有少部分企業(yè)可以達(dá)到這一水平。我們判斷至2030年,行業(yè)平均的用電成本可以降至0.25元/kwh,實(shí)現(xiàn)與化石能源制氫成本的平價(jià)。
但上述模式(化工園區(qū)制氫+新能源電站與制氫項(xiàng)目位置分離)對(duì)PEM電解槽制氫并不友好,因?yàn)橹苯硬捎镁W(wǎng)電制氫無法發(fā)揮PEM電解槽響應(yīng)快的優(yōu)點(diǎn)。
不過長(zhǎng)期看,隨著現(xiàn)場(chǎng)制氫的逐步松綁、特殊場(chǎng)景下制氫項(xiàng)目(如海上風(fēng)電或者邊遠(yuǎn)地區(qū)氫儲(chǔ)一體等)的增加以及未來制氫項(xiàng)目配套電網(wǎng)專線等場(chǎng)景的推廣,預(yù)計(jì)PEM電解槽的效率和利用小時(shí)的優(yōu)勢(shì)都將得到有效發(fā)揮。我們預(yù)計(jì)至2030年P(guān)EM電解制氫成本也有望回到20元/kg內(nèi)。
總結(jié)而言,堿性電解槽降本的主要方式是增加電流密度、降低膈膜厚度、提升催化劑的比表面積以及改進(jìn)使用傳輸層(PTLs),綜合延長(zhǎng)設(shè)備使用時(shí)間,降低電價(jià)等;PEM電解槽降本的主要方式是降低貴金屬催化劑載量以及尋找其他高比表面積的催化劑、改進(jìn)膜技術(shù)、擴(kuò)大生產(chǎn)規(guī)模等。
我們預(yù)計(jì)兩類綠氫制取路線的制氫成本在2030年前后都可以實(shí)現(xiàn)與化石能源制氫成本的平價(jià)。
目前國(guó)內(nèi)主流電解槽企業(yè)規(guī)劃產(chǎn)能接近9.5GW。我們將交通、工業(yè)等主要耗氫領(lǐng)域的氫能需求進(jìn)行分拆測(cè)算(交通領(lǐng)域的預(yù)測(cè)主要以前文氫能車、船舶、飛機(jī)數(shù)量為基礎(chǔ),按照目前單位交通設(shè)備耗氫量加總預(yù)測(cè);工業(yè)領(lǐng)域耗氫主要假設(shè)2025/2045年化工領(lǐng)域?qū)淠苄枨蟊3植蛔儯?045年氫能對(duì)傳統(tǒng)工業(yè)用化石能源替代率達(dá)到20%),預(yù)計(jì)2025/2045年氫氣需求分別為0.27/1億噸,假設(shè)綠氫占比分別在3%/50%,對(duì)應(yīng)的電解槽需求量分別為11/900GW,假設(shè)兩個(gè)階段電解槽單價(jià)分別為2500/1500元/kw(堿性電解槽和PEM電解槽價(jià)格加權(quán)),對(duì)應(yīng)電解槽的市場(chǎng)規(guī)模分別為281/13505億元,預(yù)計(jì)電解槽市場(chǎng)規(guī)模在2025年可接近300億元,2040~2045年可破萬億元。
因此電解槽賽道也成為2022年以來一級(jí)股權(quán)投資的新熱點(diǎn)領(lǐng)域。
氫能儲(chǔ)能分析:經(jīng)濟(jì)性尚未顯現(xiàn),但大規(guī)模、長(zhǎng)周期場(chǎng)景下具備可行性
氫能是一種理想的能量?jī)?chǔ)存介質(zhì),主要的優(yōu)勢(shì)在于可以為多種能源之間的能量與物質(zhì)轉(zhuǎn)換提供解決方案。
通過PTG(Power to Gas)技術(shù),可在一定程度上解決可再生能源消納及并網(wǎng)穩(wěn)定性問題。在風(fēng)力條件好或者光照時(shí)間長(zhǎng)的季節(jié),如夏季,將多余的電量電解水制氫,在電力供應(yīng)不足的季節(jié),則使用儲(chǔ)存的氫通過燃料電池發(fā)電,提供電能。
此外,氫氣也可直接作為燃料,混入天然氣中進(jìn)行混燒或在純氫燃?xì)廨啓C(jī)中直燃。
作為儲(chǔ)能的中間載體,氫能儲(chǔ)存再釋放能量的過程可以用多種形式:燃料電池發(fā)電、氫燃?xì)鈾C(jī)組發(fā)電或者氫氣直接燃燒釋放能量。但各種轉(zhuǎn)化方式對(duì)應(yīng)的效率不同,也造成了儲(chǔ)能經(jīng)濟(jì)性的差別。
我們認(rèn)為,未來在大型新能源電站等大規(guī)模的儲(chǔ)能場(chǎng)景下,通過固體氧化物燃料電池(SOFC)發(fā)電或是儲(chǔ)能轉(zhuǎn)化的理想途徑。SOFC與其他技術(shù)相比具有四大優(yōu)勢(shì):
原材料成本低:SOFC電池材料無需使用鉑、銥等貴金屬催化劑,對(duì)氫氣的純度要求也不高,綜合原材料成本相較于質(zhì)子交換膜電池低;
發(fā)電效率高,SOFC的能量轉(zhuǎn)換效率高,目前國(guó)內(nèi)研發(fā)的電池產(chǎn)品,效率可達(dá)到60%以上,高于質(zhì)子交換膜;
余熱可利用,SOFC發(fā)電產(chǎn)生大量余熱,可用于熱電聯(lián)供,整體效率可達(dá)到80%以上;
安全可靠,SOFC使用全固態(tài)組件,不存在漏液、腐蝕等問題,因此電池的工作表現(xiàn)更加穩(wěn)定可靠。
目前SOFC還處于商業(yè)化初期,國(guó)外領(lǐng)先廠商主要包括美國(guó)的Bloom Energy公司、日本三菱日立電力系統(tǒng)公司、日本京瓷、德國(guó)博世等。國(guó)內(nèi)廠商中,最早開始研發(fā)生產(chǎn)SOFC的是潮州三環(huán)(集團(tuán))股份有限公司,公司于2004年開始開發(fā)生產(chǎn)SOFC隔膜,2012年開始批量生產(chǎn)SOFC單電池,2017年推出SOFC電堆產(chǎn)品,其領(lǐng)先產(chǎn)品2022年6月已通過第三方認(rèn)證機(jī)構(gòu)SGS檢驗(yàn),交流發(fā)電效率達(dá)到64.1%,熱電聯(lián)供效率達(dá)到91.2%,主要技術(shù)指標(biāo)已達(dá)到國(guó)際先進(jìn)水平。
如果按照上述SOFC的發(fā)電效率,以“電—氫—電”的轉(zhuǎn)化過程計(jì)算,整個(gè)流程的效率約為45%。假設(shè)新能源發(fā)電成本為0.35元/kwh,經(jīng)過電解水制氫,度電的成本變?yōu)?.78元/kwh(考慮電解水制氫70%的轉(zhuǎn)化效率及SOFC64%的發(fā)電效率),電解過程中的制造費(fèi)用及折舊成本度電大約承擔(dān)0.07元/Kwh,度電分?jǐn)偟膲嚎s儲(chǔ)存成本約為0.006元/Kwh,氫氣儲(chǔ)存成本對(duì)應(yīng)為度電0.05元/Kwh;此外假設(shè)發(fā)電用燃料電池功率為250kw,利用小時(shí)數(shù)為2000小時(shí),最低成本預(yù)期對(duì)應(yīng)的利用小時(shí)數(shù)在3000小時(shí)。
由此測(cè)算,目前技術(shù)下,氫氣儲(chǔ)能的成本在1.48元kwh左右;如果度電成本降至0.2元/kwh,氫能儲(chǔ)能的成本可以降至0.88元/Kwh。
如果使用棄風(fēng)、棄光的電量,并考慮SOFC發(fā)電過程中的余熱回收,氫能儲(chǔ)電的經(jīng)濟(jì)性和可行性還有望進(jìn)一步強(qiáng)化。我們預(yù)計(jì)2023年在政策的推動(dòng)下,綠氫項(xiàng)目將從示范項(xiàng)目逐步向商用拓展。
在“雙碳”目標(biāo)的減碳場(chǎng)景下,綠氫有豐富的應(yīng)用場(chǎng)景。一方面可以與新能源電站配合,發(fā)揮氫能儲(chǔ)能的作用,另一方面,在工業(yè)領(lǐng)域,氫能也可以作為減碳的工具。
工信部發(fā)布的《“十四五”工業(yè)綠色發(fā)展規(guī)劃》明確提到了推進(jìn)“綠氫開發(fā)利用”等新型污染物治理技術(shù)裝備基礎(chǔ)研究,以及在煉化工業(yè)中推廣“綠氫煉化等綠色低碳技術(shù)”。
我們預(yù)計(jì)隨著綠氫成本的不斷降低和供給的不斷增加,2023年綠氫需求將有顯著擴(kuò)張,主要增量來自于化工企業(yè)和工業(yè)領(lǐng)域大型國(guó)企減碳的示范項(xiàng)目。
綠氫項(xiàng)目的增加有望直接帶動(dòng)對(duì)電解槽的采購需求,我們預(yù)測(cè)2023年電解槽需求量有望達(dá)到3GW的規(guī)模,對(duì)應(yīng)市場(chǎng)空間在50~60億元,有望成為除FCEV之外的氫能第二大子行業(yè)。
責(zé)任編輯: 李穎